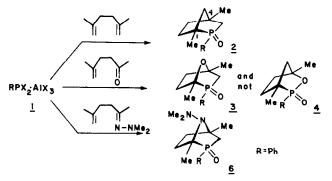
PHOSPHORUS HETEROCYCLE SYNTHESIS BY RPX2 AIX3 ADDITION TO [1,n]DIENES VII.

Y. Kashman^{*} and A. Rudi Department of Chemistry, Tel-Aviv University, Ramat Aviv 69978, Israel.

<u>Abstract</u>. The RPX₂'AlX₃ complex (<u>1</u>) reacts with unsaturated ketones and imines to give novel 7-oxa and 7-aza-2-phosphabicyclo[2.2.1]heptanes (compounds <u>3</u> and <u>6</u> respectively).

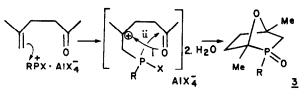

A new 1,3-dipolar addition of (CH_3) , CCH_2PXR to Ar-N=C=S was disclosed resulting in the formation of the 2-imino-1,3-thiaphospholanes $(\underline{7})$.

The use of the RPX_2 ·AlX_3 complex (1) for the synthesis of new phosphaheterocycle systems starting from 1,n-dienes, has already been described by us¹. Here we wish to represent the use of the above complex for the synthesis of other novel heterocycles which contain, apart from the P-atom, an oxygen, sulfur or a nitrogen atom in a mono or bicyclic skeleton.

The synthesis of phosphaheterocycles by the reaction of complex 1 with 1,n-dienes, led us to the examination of the reaction of 1 with $\beta\gamma$ and higher unsaturated ketones.

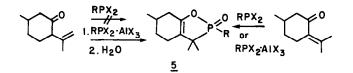
In contrast to oxo_compounds which are reported to give with RPX2 (without AIX3) interesting phosphaheterocycles², $\beta\gamma$ and $\gamma\delta$ unsaturated ketones, tested by us (vide infra), failed to give any identifiable compounds.

2-Methylhex-l-en-5-one 3 , however, gave with <u>1</u> an addition product <u>3</u>. In analogy to the reaction of 1 with 2,5-dimethylhexa-1,5-diene (compound 2, Scheme 1)^{1a}, an oxaphosphabicyclo[2. 2.1]heptane was expected to be produced. Furthermore, the obtained product should possess the relatively strong P-0 bond⁴.



Scheme 1

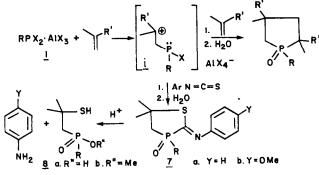
The structure of $\frac{3}{12} (C_{13}H_{17}O_2P)^5$, obtained in ca. 25%, was determined mainly on the basis of its ^{13}C and ^{1}H -NMR spectra (see Table 1) as 2-oxo-2-phenyl-2phospha-7-oxabicyclo[2.2.1] hep-Most significant for this assignment were the 13C resonance lines of the tane. $-\dot{\zeta}-0-\dot{\zeta}-P(0)Ph-CH_2$ moiety. Furthermore, the δ_{H} and J_{PC} values of the two methyl groups suggest the phosphorus atom in 3, to have the same stereochemistry as in 2a.


Obtaining 3 rather than a compound containing the P-O-C linkage (as e.g. 4, Scheme 1) was

quite surprising, suggesting that the olefin rather than the carbonyl group is first attacked by the complex to give a tertiary carbonium ion, which then reacts further with the carbonyl group to give compound 3 (see Scheme 2).

Scheme 2

Reacting <u>1</u> with 1-methyl-4-isopropenylcyclohexan-3-one, a β_{Y} -unsaturated ketone, gave in high yields a crystalline compound $(\underline{5}, C_{16}H_{12}O_2P)$ as outlined in Scheme 3. The spectral data of $\underline{5}^6$ are in full agreement with the proposed oxaphospholane structure. On the first step the isomerisation of the β_{Y} double bond produces an α,β -unsaturated ketone which is subsequently cyclised to give <u>5</u>. Such a cyclisation is known in the synthesis of 1,2-oxaphospholanes by the reaction of dihalophosphanes with α_{β} -unsaturated ketones⁷. Indeed, reacting the corresponding α_{β} -unsaturated ketone, pulegone, with RPX₂ also gave compound <u>5</u> (Scheme 3)⁸.



Scheme 3

In order to investigate the scope of the reaction, complex <u>1</u> was also reacted with $\gamma\delta$ -unsaturated imines. For example the reaction of the dimethylhydrazone of 2-methylhex-1-en-5-one⁹ with <u>1</u> gave compound <u>6</u>¹⁰ which was obtained in low yield (see Scheme 1). Compound <u>6</u> is suggested to possess the 7-aza-2-phosphabicyclo[2.2.1]heptane skeleton, its structure being deduced mainly from the ¹H and ¹³C-NMR spectra (Table 1). According to the resonance lines of the two methyl groups, the stereochemistry of the P-atom in <u>6</u> appears to be identical to that of <u>2b</u> (epimeric to <u>2a</u> and <u>3</u>).

The reaction of <u>1</u> with isobutylene produces a 2,2,4,4-tetrasubstituted phospholane in a 2:1 addition via the suggested intermediate <u>i</u> (Scheme 4)^{1b}. In an attempt to capture this carbonium-phosphiranium ion (<u>i</u>) whose exact structure is as yet unknown¹¹, it was reacted with several dienophiles. Phenylisothiocyanate led to the isolation of compound <u>7a</u> following the isothiocyanate addition to a solution of isobutylene and complex <u>1</u>, immediately after completing the addition of the olefin at -78° to the CH₂Cl₂ solution. Compound <u>7a</u> was obtained in ca. 15% yield (C₁₇H₁₈NOPS)¹². The spectral data suggested that <u>7a</u> possess the 2-imino-1,3-thiaphospholane skeleton. However, a 2-thio-1,3-azaphospholane could not be excluded¹³. The differentiation between the two possible structures was achieved from the structure of the hydrolysis product¹⁴ of <u>7a</u> (<u>8a</u>¹⁵, Scheme 4). Methylation of <u>8a</u> with CH₂N₂ gave the methylated compound <u>8b</u>¹⁶ which possessed the characteristic $\geq P(0)OMe$ absorption in the ¹H-NMR spectrum proving the presence of the $\geq P(0)OH$ moiety in <u>8a</u>. Compound <u>7a</u> is unstable and decomposes quite rapidly under acidic conditions, to compound <u>8a</u> and aniline¹⁷. Reacting p-methoxy phenylisothiocyanate¹⁸

with <u>i</u> gave compound $\underline{7b}^{19}$ which was more stable than $\underline{7a}$, explained by the electron donating OMe group. The synthesis of $\underline{7}$ represents the first example for a new 1,3-dipolar addition of the $R_2^{\text{C-CH}_2} - \tilde{P}XR^1$ species, a reaction which may find its application in the preparation of other new heterocycles.

Scheme 4 Table 1 13 C chemical shifts and 13 C- 31 P coupling constants^a.

C-	1	3	4	5,6		C ₁ -Me	с ₄ - <u>М</u> е	C ₁ -Me	с ₄ - <u>М</u> е
2a	43.4	40.0	43.8	37.5	31.5	14.9	24.1	1.00s	1.30s
	(68)	(59)	(0)	(0)	(7)	(0)	(12)	(14)	(3)
<u>3</u>	82.6	41.2	84.7	38.2	31.8	16.1	24.4	1.20s	1.60s
	(77)	(67)	(0)	(0)	(7)	(7)	(6)	(12)	(3)
<u>26</u> C	45.2	41.5	43.2	36.9	31.1	13.9	23.5	1.30s	1.30s
	(68)	(59)	(0)	(0)	(0)	(0)	(12)	(12)	(3)
<u>6</u>	66.9	42.8	68.2	38.2	31.8	13.7	22.6	1.53s	1.53s
	(63)	(65)	(0)	(0)	(0)	(0)	(11)	(13.5)	(2)
3	Chomical ch	ifte in po	wto non mi	llion pol	ative to	MS dotorm	inod on a	Brukan 114.00	inctru-

a. Chemical shifts, in parts per million, relative to TMS, determined on a Bruker WH-90 instrument (in CDCl₃). Numbers in parentheses stand for the coupling constants in Hz.

c. The stereochemistry of the P-atom in the two P-epimers, <u>2a</u> and <u>2b</u>, is still unidentified.

References and Notes

- a. Y. Kashman and A. Rudi, Tetrahedron Letters, 2819 (1976), b. ibid, 2209 (1978), c.ibid, 1077 (1979), d. Tetrahedron, in press.
- S. Kh. Nurtdinov, V.S. Tsivunin, R.S. Khairullin, V.G. Khashtanova and G. Kh. Kamai, Zhur. Obshchei. Khim. <u>40</u>, 36 (1970).
- 3. W. Kimel and A.C. Cope, J. Am. Chem. Soc. <u>65</u>, 1992 (1943).
- 4. The strength of the P-O bond is 86 kcal/mole whereas the strength of the P-C bond is 65 kcal/ mole only; R.F. Hudson, "Structure and Mechanism in Organo-Phosphorus Chemistry", Academic Press 1965, N.Y., p.11.
- 5. An oil, m/e 236 (M⁺,100), 221 (M⁺-Me,20), 180(30), 139(98) and 140(95); v^{neat}_{max}2900, 1440, 1380, 1320, 1230, 1220, 1180 and 1100 cm⁻¹; ¹H-NMR (CDCl₃,60MHz, 6; the multiplicity is given after P-decoupling): 1.20s(3H,J_{PH}=12Hz), 1.60s(3H,J_{PH}=3Hz), 1.80m(3H), 2,10brs(2H, J_{PH}=12Hz) and 2.80m(1H).
- 6. A crystalline compound m.p. 175° , m/e $276(M^+,30)$ and $281(M^+-Me,100)$, $v_{max}^{neat}2900$, 1690,1430, 1350, 1220, 1100, 1010, 940, 860, 810, 780, 720 and 690 cm⁻¹; ¹H-NMR: 0.84d (3H,J_{PH}=21,

b. The $\delta_{\rm H}$ values of the methyl groups of the pair 2a and 3 and the pair 2b and 6 indicate their similarity. In the case of 2b and 6 the chemical shifts are identical whereas in 2a and 3 they appear separately.

J=1Hz), 1.05d(3H,J=6Hz), 1.38s(3H,J_{PH}=16Hz) and 3.0m(1H); 13 C-NMR(22.63MHz, δ): 19.3dq(J_{PC}=9Hz), 20.1q, 21.2q, 23.3dt(J_{PC}=4Hz), 29.0dd(J_{PC}=6Hz), 31.2t, 32.5dt(J_{PC}=7Hz), 39.7d(J_{PC}=81Hz), 118.2d(J_{PC}=5Hz) and 146.8s.

- 7. L. Anschutz, E. Klein and G. Cermak, Chem. Ber. <u>77b</u>, 726 (1944).
- 8. l,4-Dimethyl-4-isopropenylcyclohexan-3-one, which cannot isomerize to the $\alpha\beta$ -unsaturated ketone, yields upon phosphorylation an adduct the structure of which is under investigation.
- Azeotropic reflux of equimolar amounts of 2-methylhex-l-en-5-one and l,l-dimethyl hydrazine yielded the corresponding hydrazone; ¹H-NMR: 1.70s(Me),l.80s(Me), 2.30s(NMe₂) and 4.85 brs(2H)
 An oil, C₁₅H₂₃N₂OP, m/e 278(M⁺,20) and 234(M⁺-NMe₂,100); v_{max}2950, 1440, 1370, 1180, 1110,
- 10. An oil, $C_{15}H_{23}N_2OP$, m/e 278(M⁺,20) and 234(M⁺-NMe₂,100); v_{max} 2950, 1440, 1370, 1180, 1110, 850 and 690 cm⁻¹; ¹H-NMR: 1.53s(3H,J_{PH}=13.5Hz), 1.53s(3H,J_{PH}=2Hz), 1.60m(4H), 2.12s(2H, J_{PH}=6Hz), and 2.72s(6H,NMe₂).
- The three-membered phosphiran ring is believed to be highly strained and very unstable;
 G. Markl, Angew. Chem. Int. Ed. <u>4</u>, 1023 (1965).
- 12. A. crystalline compound; m.p. 110° ; $C_{17}H_{18}NOPS$, m/e $315(M^{+},30)$, 260(15), 213(15), 180(30), 160(30), 133(100) and 124(90); v_{max} 2900, 1580, 1570, 1490, 1440, 1380, 1210, 1180, 1130, 1120, 1080, 970, 940 and 850 cm^{-1} ; $\lambda_{max}^{CH_3CN}$ 320nm(26,000), 274(41,500) and 213(130,000); 1 H-NMR: $1.60s(3H,J_{PH}=1.5Hz)$, 1.82s(3H), 2.46 AB quartet (2H), 6.90-7.20m(5H), 7.80-8.10 (3H) and 8.00-8.40 (2H) 13 C-NMR: $32.4dq(J_{PC}=8Hz)$, 33.6q, $43.4dt(J_{PC}=77Hz)$, 51.9s and $151.0d(J_{PC}=20Hz)$.
- For a review of additions to ArC=N=S see S.St.C. Black and K.G. Watson, Aust. J. Chem. <u>26</u>, 2473 (1973).
- 14. The hydrolysis of the thiaphospholanes is expected to occur via a similar mechanism as the one suggested for the hydrolysis of ortho-esters.
- 15. An oil, $C_{10}H_{15}O_2PS$, m/e 230(M⁺,80), 196(M⁺-H₂S,100), 170(15) and 140(90); \cup_{max}^{neat} 2900, 1560, 1490, 1110, 1080 and 970 cm⁻¹, ¹H-NMR: 1.45s(6H). 1.70s(2H,J_{PH}=13.5Hz) and 7.50-8.00m(5H); ¹³C-NMR: 33.8dq(J_{PC}=5Hz), 43.5dt(J_{PC}=78Hz) and 49.5s.
- 16. An oil C₁₁H₁₇O₂PS, m/e 244(M⁺,5), 211(M⁺-SH,50) and 1.56(PhP(OH)OMe,100); ¹H-NMR: 1.55s (6H), 2.29AB quart.(2H) and 3.5s(3H,J_{0H}=12Hz).
- 3-Phenyl-2-phenylimino-1,3-thiaphospholane, synthesized in another way, was found to be unstable to acid; K. Issleib and Kl.D. Franze, J. für Prakt. Chem. <u>315</u>, 471 (1973).
- 18. F.B. Dains, R.Q. Brewster and C.P. Olander, Org. Syn I, p. 447.
- 19. A. crystalline compound, m.p. 150° ; $C_{18}H_{20}NO_2PS$, m/e $345(M^+,15)$, 235(3), 215(15), 165(100), 150(80) and 149(80); v_{max}^{KBr} 2900, 1600, 1550, 1500, 1430, 1290, 1250, 1180, 1100, 1020, 930, 920, 820 and 730 cm⁻¹: $\lambda_{max}^{CH}CN$ 335(8300), 283(9200), 274(8800) and 254(9200); ¹H-NMR: $1.55s(3H,J_{PH}^{=}3Hz)$, 1.82s(3H) 2.45AB quart.(2H), $3.75s(0CH_3)$, 6.75-8.00m (9H)¹³C-NMR: $32.3dq(J_{Pr}^{=}9Hz)$, 33.6q, $43.0dt(J_{Pr}^{=}77Hz)$, 51.9s, 55.4q and $143.4d(J_{Pr}^{=}22Hz)$.

(Received in UK 27 April 1981)